34686 - ISTITUZIONI DI ANALISI SUPERIORE 2

Scheda insegnamento

Anno Accademico 2017/2018

Conoscenze e abilità da conseguire

Al termine del corso, lo studente: - possiede nozioni avanzate sulla teoria delle distribuzioni, degli spazi di Sobolev e della teoria astratta della misura; - e' in grado di condurre autonomamente lo studio di discipline teoriche ed applicative che richiedano la conoscenza delle teorie elencate.

Programma/Contenuti

Il corso è diviso in due parti indipendenti. Parte 1 (prof. F. Ferrari) Disuguaglianze variazionali. Disuguaglianze variazionali in spazi di Hilbert con particolare riferimento agli spazi di Sobolev e al problema dell'ostacolo.  Parte 2 (prof. A. Parmeggiani) La classe di Schwartz delle funzioni a decrescenza rapida. Le distribuzioni temperate. Trasformata di Fourier delle funzioni di Schwartz e delle distribuzioni temperate. Applicazioni alle equazioni alle derivate parziali

Testi/Bibliografia

Parte 1. Parte degli argomenti verranno tratti da: D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications Academic Press 1980, R. Adams, Sobolev Spaces Academic Press 1975. Potranno altresì essere utili anche: L.C. Evans, R.F. Gariepy, Measure theory and ne properties of functions, Studies inAdvanced Mathematics, CRC Press, Boca Raton, Flo. (1992). W. Ziemer, Weakly dierentiable functions: Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics 120, Springer-Verlag, New York (1989). Parte 2. 1) L. Grafakos: Classical Fourier Analysis, Graduate Texts in Mathematics 249, 2nd Edition, Springer 2) G. Eskin: Lectures on Linear Partial Differential Equations, Graduate Studies in Mathematics Vol. 123, American Mathematical Society Altri testi: 3) G. Grubb: Distributions and Operators, Graduate Texts in Mathematics 252, Springer 4) J. Rauch: Partial Differential Equations, Graduate Texts in Mathematics 128, Springer-Verlag 5) G. Folland: Introduction to Partial Differential Equations. Second Edition. Princeton University Press.

Metodi didattici

Lezioni frontali e seminari specialistici degli studenti.

Modalità di verifica dell'apprendimento

Lo studente potrà scegliere tra un esame tradizionale e un seminario su un argomento avanzato legato alle tematiche del corso ma non sviluppato nel corso stesso. Inoltre durante il corso verranno proposti degli esercizi che il candidato dovrà svolgere autonomamente.

Orario di ricevimento

Consulta il sito web di Fausto Ferrari

Consulta il sito web di Alberto Parmeggiani