66734 - COMPLEMENTI DI GEOMETRIA SUPERIORE

Scheda insegnamento

Anno Accademico 2017/2018

Conoscenze e abilità da conseguire

Al termine del corso, lo studente: - possiede una cultura elevata in ambito geometrico, algebrico e differenziale; - è in grado di utilizzare queste conoscenze nella propria ricerca in ambito sia geometrico che algebrico.

Programma/Contenuti

Varieta' affini e proiettive. La topologia di Zariski. Applicazioni tra varieta' algebriche. Esempi classici. La nozione di schema, motivazioni ed esempi. Il funtore dei punti di uno schema. Lo spettro di un anello, lo spettro omogeneo di un anello graduato. Alcune nozioni fondamentail: separazione e completezza. Applicazioni tra schemi. Regolarita' e singolarita' di schemi. Normalita'. Applicazioni tra schemi: piattezza e liscezza. Fasci quasi coerenti e coerenti su uno schema, e loro coomologia. Comparazione tra geometria algebrica di schemi su C e geometria analitica. 

 

 

Testi/Bibliografia

Hartshorne algebraic geometry. Liu Algebraic geometry and arithmetic curves. Vakil Foundations of algebraic geometry. Manetti Geometria algebrica.

Metodi didattici

Lezioni orali

Modalità di verifica dell'apprendimento

Esame orale

Orario di ricevimento

Consulta il sito web di Luca Migliorini

Consulta il sito web di Giovanni Mongardi