66913 - CHIMICA FISICA 1

Scheda insegnamento

Anno Accademico 2017/2018

Conoscenze e abilità da conseguire

Al termine del corso, lo studente padroneggia le conoscenze matematiche già acquisite per applicarle a problemi della Chimica Fisica; conosce i fondamenti della simmetria molecolare; conosce i principi fondamentali della meccanica quantistica per un successivo studio della struttura atomica e molecolare. Lo studente conosce inoltre i metodi della Meccanica Quantistica e sa applicarli allo studio delle proprietà elettroniche, in particolare dei livelli energetici di atomi e molecole semplici.

Programma/Contenuti

  1. Elementi di algebra lineare: Spazi vettoriali, Algebra matriciale, Matrici e trasformazioni lineari, Determinanti, Matrici invertibili, Matrici ortogonali, Matrici complesse, Il problema agli autovalori, Trasformazioni di similitudine e diagonalizzazione, Matrici hermitiane.
  2. Simmetria molecolare e teoria dei gruppi: Introduzione e tipi di simmetria; Operazioni ed elementi di simmetria;  Gruppi: definizione, tavola di moltiplicazione, proprietà e definizioni; Gruppi puntuali di simmetria; Le operazioni di simmetria come trasformazione lineari nello spazio ordinario 3D; Rappresentazioni matriciali di gruppi di simmetria; Funzioni come basi per rappresentazioni; Rappresentazioni equivalenti; Rappresentazioni riducibili ed irriducibili; Teorema di ortogonalità delle rappresentazioni e dei caratteri; Tavole dei caratteri.
  3. Simmetria e quantomeccanica: I postulati della meccanica quantistica: stati, operatori ed osservabili; L'equazione di Schroedinger; Intepretazione della funzione d'onda; Evoluzione temporale; Formulazione matriciale; Simmetria dell'Hamiltoniano; Simmetria e degenerazione; Integrali e regole di selezione.
  4. Cenni su equazioni differenziali ordinarie e alle derivate parziali: Eq. del I ordine a variabili separabili, Eq. del I ordine lineari, Eq. del II ordine lineari omogenee a coefficienti costanti, Applicazioni all'oscillatore armonico classico e alla particella in una scatola e in un anello, Eq. del II ordine lineari non omogenee; Separazione delle variabili, Applicazioni alla particella in una scatola rettangolare e in una circolare.
  5. L'oscillatore armonico ed il rotatore rigido: L'oscillatore armonico e legge di Hooke; molecola biatomica, massa ridotta, approssimazione dell'oscillatore armonico; livelli energetici dell'oscillatore armonico; modello dell'oscillatore armonico e spettri vibrazionali di molecole biatomiche; i polinomi di Hermite; il rotatore rigido; rotazione molecolare di molecole biatomiche. Esercizi.

  6. Atomo di idrogeno ed atomi idrogenoidi: Hamiltoniano e funzione d'onda per l'atomo di H e sua separabilita' in piu' funzioni d'onda; soluzione della parte angolare ed armoniche sferiche, Y( q , f ); equazioni di Legendre, polinomi di Legendre e funzioni associate di Legendre; le Ylm( q , f ) sono anche autofunzioni di L2 (operatore quadrato del momento angolare); proprieta' delle componenti del momento angolare; commutazione fra L e le sue componenti; risoluzione dell'equazione d'onda radiale, R(r); funzione d'onda totale Y nlm (r, q , f ); significato di Y nlm ed orbitali; R(r), R(r)*R(r) e 4 p r 2 R(r) * R(r); orbitali p ± 1 e px py. Esercizi.

  7. Principio variazionale e Teoria delleperturbazioni: Definizione del principio variazionale. Esempi con funzioni di prova semplici. Combinazioni lineari di funzioni come funzioni prova. Determinante secolare. Teoria delle perturbazioni del 1º. Esercizi.

  8. Atomi a più elettroni: Termine di interazione elettronica. Hamiltoniano in unità atomiche. Spin dell'elettrone. Funzioni d'onda di spin. Funzioni d'onda totali e condizioni di simmetria. Simboli di termine atomico. Numeri quantici L, S, J. Determinazione dei simboli di termine. Configurazioni elettroniche, simboli di termine e degenerazione. Regole di Hund. Esercizi.

  9. Prove di Laboratorio: Utilizzo di fogli di lavoro elettronici per aiutare gli studenti a padroneggiare i concetti acquisiti.

Testi/Bibliografia

  • Il linguaggio della simmetria: la teoria dei gruppi, L. DORE, Pitagora 2015, 3 ed.
  • The Chemistry Math Book, E. STEINER, Oxford, 2008, 2 ed.
  • Molecular Quantum Mechanics, P.W. ATKINS e R.S. FRIEDMAN, Oxford, 2010.

Metodi didattici

Il corso comprende due moduli. Il primo, Metodi matematici per la chimica, si svolge al primo semestre; il secondo modulo, Struttura atomica e molecolare, si svolge al secondo. Ciascuno dei due moduli corrisponde a 5 cfu. 

Il primo modulo è strutturato in lezioni frontali in aula con presentazione degli aspetti teorici degli argomenti trattati e svolgimento di esercizi. Il secondo, oltre alle lezioni frontali, prevede due prove di laboratorio.

Modalità di verifica dell'apprendimento

La verifica dell'apprendimento avviene attraverso il solo esame finale, esso accerta l'acquisizione delle conoscenze e delle abilità attese tramite lo svolgimento di prove separate per ciascun modulo.

Per il primo modulo l'esame consiste in una prova scritta di 3 ore, che prevede la risoluzione di esercizi senza disponibilità di materiale didattico, alla quale segue la prova orale.  Per essere ammessi a sostenere la prova orale è necessario ottenere nella prova scritta un punteggio minimo di 16-18 punti. La prova orale consiste nella discussione dell'elaborato scritto e nella risposta a due quesiti principali  relativi ad argomenti trattati durante il corso.

L’esame relativo all’apprendimento degli argomenti del secondo modulo consiste in una prova scritta con soluzione di esercizi numerici seguita da una prova orale relativa alla teoria.

Il voto finale finale viene calcolato come media aritmetica del voto della prova di ciascun modulo.

Strumenti a supporto della didattica

Videoproiettore, calcolatore portatile, lavagna.

Orario di ricevimento

Consulta il sito web di Luca Dore

Consulta il sito web di Francesco Zerbetto

Consulta il sito web di Stefania Rapino