67135 - MODELLI E METODI NUMERICI PER LA FISICA

Scheda insegnamento

Anno Accademico 2017/2018

Conoscenze e abilità da conseguire

Al termine del corso, lo studente conosce le tecniche numeriche di base per il calcolo di integrali definiti, il calcolo di punti fissi o soluzioni di equilibrio di un sistema dinamico e gli zeri di un polinomio e l'integrazione numerica di equazioni differenziali ordinarie. In particolare, lo studente è in grado di: - applicare il metodo della bisezione, il metodo di punto fisso e il metodo di Newton per il calcolo di punti fissi di mappe non lineari; - calcolare per via numerica integrali definiti mediante metodi di interpolazione; - risolvere equazioni differenziali ordinarie mediante metodi di Runge-Kutta e metodi conservativi.

Programma/Contenuti

Metodi numerici di base: Ricorrenze e convergenza, metodo di Newton e di bisezione. Interpolazione, derivazione e integrazione numerica. Soluzione di equazioni lineari. Approssimazione di funzioni. Metodi alle differenze per equazioni paraboliche ed equazioni d'onda.

Sistemi Hamiltoniani: Trasformazioni canoniche. Equazione di Liouville. Teoria perturbative e approssimazione adiabatica. Mappe e integratori simplettici.

Modelli: pendolo dipendente dal tempo, problema dei tre corpi, lenti elettromagnetiche.

Sistemi stocastici: Dinamica di particella in un campo fluttuante. Rumore di Wiener ed equazione di Langevin. Equazione di Fokker-Planck. Equazioni Master e formalismo termodinamico.

Modelli: oscillatore stocastico, sistemi bistabili, modelli di Markov

Sistemi estesi: Equazione cinetica per sfere dure. Equazione di Vlasov per forze a lungo raggio. Collisioni, processi diffusivi stocastici ed equilibrio Maxwell-Boltzmann. Momenti di una distribuzione e descrizione fluida.

Modelli: corda elastica, fluido viscoso di Burger, onde in un plasma.

Testi/Bibliografia

G. Turchetti Appunti per Metodi e Modelli Numerici e libro Dinamica Classica http://www.physycom.unibo.it/corsi.php.

W. H. Press et al Numerical recipes per parte 1 V.I.Arnold Meccanica Classica Editori Riuniti per parte 2.

Gardiner Handbook of Stochastic Methods Springer per parte 3.

R. Balescu Equilibrium and Non-equilibrium Statistical Mechanics Wiley Interscience publication 1975.

A.Vulpiani Caos and coarse graining in statistical mechanics per parte 4.

Metodi didattici

lezioni frontali

laboratorio numerico

Modalità di verifica dell'apprendimento

esame orale con discussione elaborato

Strumenti a supporto della didattica

 

proiettore

supporto hardware numerico

Orario di ricevimento

Consulta il sito web di Armando Bazzani

Consulta il sito web di Giorgio Turchetti