81854 - ANALISI MATEMATICA 1B

Scheda insegnamento

Anno Accademico 2017/2018

Conoscenze e abilità da conseguire

Al termine del corso, lo studente approfondisce le conoscenze di base dell'analisi matematica, individuandola come scienza centrale unica e creativa. Ha la conoscenza del concetto di integrale e di integrale generalizzato di funzioni reali di una variabile reale e di serie numerica. E' in grado di studiare funzioni reali di una variabile reale. In particolare, lo studente sa applicare tali conoscenze alla soluzione di semplici problemi pratici, posti dalle scienze pure ed applicate.

Programma/Contenuti

Funzioni convesse di una variabile reale.

Formula di Taylor.

Integrale di Riemann per funzioni reali di variabile reale.I teoremi fondamentali del calcolo.Primitive. Integrali generalizzati.

Serie numeriche.

Spazi metrici.

Successioni e serie di funzioni.

Testi/Bibliografia

Ermanno Lanconelli, Lezioni di Analisi Matematica 1, Ed. Pitagora;

Enrico Giusti, Analisi Matematica 1, Ed. Boringhieri;

Carlo Pagani e Sandro Salsa, Analisi Matematica 1, Zanichelli

Walter Rudin, Principi di Analisi Matematica, Mcgraw-Hill.

Metodi didattici

Lezioni ed esercitazioni in aula.

Modalità di verifica dell'apprendimento

L'esame consiste in una prova scritta preliminare e una prova orale. La prova scritta consiste di esercizi relativi agli argomenti svolti nel corso. Per sostenere la prova scritta occorre iscriversi in lista tramite AlmaEsami [https://almaesami.unibo.it/].

La prova scritta rimane valida per sostenere l'orale nello stesso periodo di esame.

La prova orale, successiva alla prova scritta, riguarda prevalentemente gli aspetti teorici del corso. Lo studente deve dimostrare di conoscere i concetti spiegati nel corso (in particolare definizioni e teoremi e le loro dimostrazioni) e di saperli collegare tra loro.

Orario di ricevimento

Consulta il sito web di Alberto Parmeggiani

Consulta il sito web di Bruno Franchi